# MINIMUM DOMINATING SEIDEL ENERGY OF A GRAPH

M.R. RAJESH KANNA\*, R JAGADEESH, B.K. KEMPEGOWDA

**Abstract**—In This paper, we introduce the concept of minimum dominating seidel energy of a graph  $SE_D(G)$  and computed minimum dominating seidel energy of a star graph, complete graph crown graph and cocktail party graphs. Upper and lower bounds for  $SE_D(G)$  are established.

Mathematics Subject Classification: Primary 05C50, 05C69.

**Keywords and Phrases:** Minimum dominating Seidel set, Minimum dominating Seidel matrix, Minimum dominating Seidel eigenvalues, Minimum dominating Seidel energy of a graph.

### **1** INTRODUCTION

The concept of energy of a graph was introduced by I. Gutman[7] in the year 1978. Let G be a graph with n vertices and m edges and let A =(a<sub>ij</sub>) be the adjacency matrix of the graph. The eigenvalues  $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$  of A, assumed in non increasing order, are the eigenvalues of a graph G As A is real symmetric, the eigenvalues of G are real with sum equal to zero. The energy E(G) of G is defined to be sum of the absolute values of eigenvalues of G. i.e.,  $E(G) = \sum_{i=1}^{n} |\lambda_i|$ .

For details on the mathematical aspects of the theory of graph energy seethe reviews[8], paperr[4, 5, 9] and references cited there in. The basic properties including various upper and lower bounds for energy of a graph have been established in [11, 13] and it has found remarkable chemical applications in the molecular orbital theory of conjugated molecules [6, 10]. Further studies on covering energy and dominating energy can be found in [3, 15].

### **1.1 SEIDEL ENERGY**

Let G be a simple graph of order n with vertex set  $V = \{v_1, v_2, v_3, ..., v_n\}$  and ege set E. The Seidel matrix of G is the n x n matrix defined by  $S(G):=(s_{ij})$ , where

where 
$$s_{ij} = \begin{cases} -1 & \text{if } v_i v_j \in E \\ 1 & \text{if } v_i v_j \notin E \\ 0 & \text{if } v_i = v_j \end{cases}$$

The characteristic polynomial of S(G) is denoted by  $f_n(G, \lambda) = \det(\lambda I - S(G))$ . The seidel eigenvalues of a graph G are the eigenvalues of S(G). since S(G) is real and symmetric, its eigenvalues are real numbers. The Seidel energy [16] of G is defined as  $SE(G) = \sum_{i=1}^{n} |\lambda_i|$ .

### **1.2 MINIMUM DOMINATING SEIDEL ENERGY**

Let G be a simple graph of order n with vertex set  $V = \{v_1, v_2, v_3, \dots, v_n\}$  and edge set E. A subset D of V is called a dominating set of G if every vertex of V-D is adjacent to some vertex in D. Any dominating set with minimum cardinality is called minimum dominating set. The minimum dominating seidel matrix of G is the n x n matrix defined by  $S_D(G):=(s_{ij})$ ,

 M.R. RAJESH KANNA, Department of Mathematics, Maharani's Science College for Women, J.L.B. Road, Mysore-570005, India.

• R. JAGADEESH, Assistant Professor, Department of Mathemaics, Government Science College, N.T.Road, Bangalore-560001, India.

B.K. KEMPEGOWDA, Department of Chemystry, Maharani's Science College for Women, J.L.B. Road, Mysore-570005, India.

where 
$$s_{ij} = \begin{cases} -1 & \text{if } v_i v_j \in E \\ 1 & \text{if } v_i v_j \notin E \\ 1 & \text{if } i = j \text{ and } v_i \in D \\ 0 & \text{if } i = j \text{ and } v_i \notin D \end{cases}$$

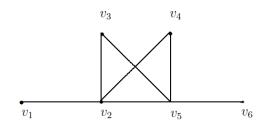
The characteristic polynomial of  $S_D(G)$  is denoted by  $f_n(G, \lambda) = \det(\lambda I - S(G))$ . The minimum dominating seidel eigenvalues of a graph G are the eigenvalues of  $S_D(G)$ . since  $S_D(G)$  is real and symmetric, its eigenvalues are real numbers and we label them in non-increasing order

 $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \dots \lambda_n$ . The minimum dominating Seidel energy of G is defined as .  $SE_D(G) = \sum_{i=1}^n |\lambda_i|$ 

Note that the trace of  $SE_D(G) = Dominating Number = k$ .

#### **EXAMPLE1:**

The possible minimum dominating sets for the following graph G are i)  $D_1 = \{v_1, v_5\}$  ii)  $D_2 = \{v_2, v_5\}$  iii)  $D_3 = \{v_2, v_6\}$ 



i) 
$$S_D(K_n) = \begin{pmatrix} 1 & -1 & -1 & \cdots & -1 & -1 \\ -1 & 0 & -1 & \cdots & -1 & -1 \\ -1 & -1 & 0 & \cdots & -1 & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & -1 & -1 & 0 \end{pmatrix}_{n \times n}$$
  
ii)  $S_{D1}(G) = \begin{pmatrix} 1 & -1 & 1 & 1 & 1 & 1 \\ -1 & 0 & -1 & -1 & 1 & 1 \\ 1 & -1 & 0 & 1 & -1 & 1 \\ 1 & -1 & 1 & 0 & -1 & 1 \\ 1 & -1 & -1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 & -1 & 0 \end{pmatrix}$ 

Characteristic equation is

 $\lambda^6 - 2\lambda^5 - 14\lambda^4 + 12\lambda^3 + 57\lambda^2 + 14\lambda - 20 = 0.$ The minimum dominating Seidel eigenvalues are  $\lambda_1 \approx 0.47432562456252, \ \lambda_2 \approx -1.0,$ 

 $\lambda_3 \approx -1.614540819326829$ ,

 $\lambda_4 \approx 2.83396262531981$ ,

 $\lambda_5 \approx -2.452013091804278$ ,  $\lambda_6 \approx 3.7582661248777$ . The minimum dominating Seidel energy SE<sub>D1</sub>(G)  $\approx 12.13310782226221$ .

Characteristic equation is

$$\begin{split} \lambda^6 &- 2\lambda^5 - 14\lambda^4 + 12\lambda^3 + 61\lambda^2 + 14\lambda - 24 = 0 \,. \end{split}$$
The minimum dominating Seidel eigenvalues are  $\lambda_1 \approx 0.51513804712807, \lambda_2 \approx -0.9999999999999999, \end{split}$ 

$$\lambda_{3} \approx -2.0, \lambda_{4} \approx 3.0, \lambda_{5} \approx -2.141336115655365,$$

 $\lambda_6 \approx 3.626198068527294$ .

The minimum dominating Seidel energy

 $SE_{D2}(G) \approx 12.28267223131073$ .

Therefore, Minimum Dominating Seidel energy depends on the dominating set.

# 2. MINIMUM DOMINATING SEIDEL ENERGY OF SOME STANDARD GRAPHS

**Theorem 2.1.** For  $n \ge 2$ , minimum dominating seidel energy of complete graph K<sub>n</sub>is  $(n-2) + \sqrt{n^2 + 2n - 3}$ .

**Proof.**  $K_n$  is a complete graph with vertex set  $V = \{v_1, v_2, v_3, \dots, v_n\}$ . The minimum dominating set is  $D = \{v_1\}$ . Then

Characteristic equation is

$$(-1)^n (\lambda - 1)^{n-2} [\lambda^2 + (n-3)\lambda - (2n-3)] = 0.$$

The minimum dominating Seidel eigenvalues are

$$\lambda = 1$$
 [(n-2) times],  $\lambda = \frac{(n-3) \pm \sqrt{n^2 + 2n - 3}}{2}$  [one time each].

Minimum dominating Seidel energy, SE<sub>D</sub>(K<sub>n</sub>)

$$= |1|(n-2) + \left| \frac{(n-3) + \sqrt{n^2 + 2n - 3}}{2} \right| + \left| \frac{(n-3) - \sqrt{n^2 + 2n - 3}}{2} \right|$$
$$= (n-2) + \sqrt{n^2 + 2n - 3}.$$

**Definition 2.1.** The Cocktail party graph is denoted by  $K_{n\times 2}$ , is a graph having the vertex set  $V = \bigcup_{i=1}^{n} \{u_i, v_i\}$  and the edge set  $E = \{u_i u_j, v_i v_j : i \neq j\} \bigcup \{u_i v_j, v_i u_j : 1 \leq i < j \leq n\}$ .

**Theorem 2.2.** Then minimum dominating Seidel energy of cocktail party graph  $K_{n\times 2}$ , for  $n\ge 2$  is  $(4n 7) + \sqrt{4n^2 + 4n - 7}$ .

**Proof.** Let  $K_{n\times 2}$  be the cocktail party graph with vertex set V=U { $u_i$ ,  $v_i$ } . The minimum dominating set is D= {  $u_1,v_1$ }. Then

|                         | (     | $u_1$   | $u_2$   | $u_3$   |     | $u_n$ | $v_1$   | $v_2$   | $v_3$   |                | $v_n$   |
|-------------------------|-------|---------|---------|---------|-----|-------|---------|---------|---------|----------------|---------|
|                         | $u_1$ | 1       | $^{-1}$ | $^{-1}$ |     | -1    | 1       | $^{-1}$ | $^{-1}$ |                | -1      |
|                         | $u_2$ | $^{-1}$ | 0       | $^{-1}$ |     | -1    | $^{-1}$ | 1       | $^{-1}$ |                | $^{-1}$ |
|                         | $u_3$ | -1      | -1      | 0       |     | -1    | $^{-1}$ | -1      | 1       |                | -1      |
|                         | :     | :       | :       | :       | ٠., | :     | :       | 1       | :       | ٠.,            | :       |
| $S_D(K_{n \times 2}) =$ | $u_n$ | -1      | -1      | -1      |     | 0     | -1      | -1      | -1      |                | 1       |
|                         | $v_1$ | 1       | -1      | -1      |     | -1    | 1       | -1      | -1      |                | $^{-1}$ |
|                         | $v_2$ | -1      | 1       | $^{-1}$ |     | -1    | -1      | 0       | -1      |                | -1      |
|                         | $v_3$ | $^{-1}$ | $^{-1}$ | 1       |     | -1    | $^{-1}$ | $^{-1}$ | 0       |                | -1      |
|                         | :     | ÷       | ÷       | - :     | · . | :     | :       | 1       | :       | $\gamma_{i,j}$ | - :     |
|                         | $v_n$ | -1      | -1      | -1      |     | 1     | -1      | $^{-1}$ | -1      |                | 0 )     |

$$\lambda(\lambda+1)^{n-1}(\lambda-3)^{(n-2)}[(\lambda^2+(2n-7)\lambda-2(4n-7)]=0$$

Characteristic equation is

Minimum dominating Seidel eigenvalues are  $\lambda = 0$  [one time],

$$\lambda = 3$$
 [(n-2) times],  $\lambda = \frac{(2n-7) \pm \sqrt{4n^2 + 4n - 7}}{2}$  [one time each]

$$\lambda = -1 [(n-1) \text{ times}],$$

$$= 0 + |-1|(n-1) + |3|(n-2) + \left|\frac{(2n-7) + \sqrt{4n^2 + 4n - 7}}{2}\right| + \left|\frac{(2n-7) - \sqrt{4n^2 + 4n - 7}}{2} + \frac{(2n-7) - \sqrt{4n^2 + 4n - 7}}{2}\right| + \frac{(2n-7) - \sqrt{4n^2 + 4n - 7}}{2} + \frac{(2n-7) - \sqrt{4n^2 + 4n - 7}}{2}$$

$$= (4n - 7) + \sqrt{4n^2 + 4n - 7}.$$
 Minimum dominating Seidel  
energy, SE<sub>D</sub> (K<sub>n×2</sub>)

**Theorem 2.3.** for  $n \ge 2$ , the minimum dominating Seidel energy of Star graph  $K_{1,n-1}$  is equal to  $(n - 2) + \sqrt{n^2 - 2n} + 5$ .

$$S_D(K_{1,n-1}) = \begin{pmatrix} 1 & -1 & -1 & \dots & -1 \\ -1 & 0 & 1 & \dots & 1 \\ -1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 1 & 1 & \dots & 0 \end{pmatrix}_{n \times n}$$

IJSER © 2016 http://www.ijser.org **Proof.** Consider the star graph  $K_{1,n-1}$  with vertex set  $V = \{v_o, v_1, v_2, ..., v_{n-1}\}$ . Minimum dominating set is  $D = \{v_o\}$ . Then

Characteristic equation is

 $(-1)^n (\lambda + 1)^{n-2} [\lambda^2 - (n-1)\lambda - 1] = 0.$ 

The minimum dominating Seidel eigenvalues are

 $\lambda = -1 \quad [(n-2) \text{ times}], \quad \lambda = \frac{(n-1) \pm \sqrt{n^2 - 2n + 5}}{2} \quad [\text{one time each}].$ 

The minimum dominating Seidel energy is,

 $SE_D(K_{1,n-1}) = |-1|(n-2) + \left|\frac{(n-1) + \sqrt{n^2 - 2n + 5}}{2}\right| + \left|\frac{(n-1) - \sqrt{n^2 - 2n + 5}}{2}\right|$ 

 $=(n-2) + \sqrt{n^2 - 2n + 5}$ 

**Definition 2.2.** The Crown graph  $S^{\circ}_{n}$  for an integer  $n \geq 2$  is the graph with vertex set  $\{u_{1}, u_{2}, ..., u_{n}, v_{1}, v_{2}, ..., u_{n}\}$  and edge set  $\{u_{i}, v_{j} : 1 \leq i, j \leq n, i \neq j\}$ . • •  $S^{\circ}_{n}$  coincides with the Complete bi[artite graph  $K_{n,n}$  with horizontal edges removed.

**Theorem 2.4.** for  $n \ge 2$ , the minimum dominating Seidel Energy of the Crown graph  $S_n^o$  is equal to  $(4n - 5) + \sqrt{4n^2} - 4n + 9$ .

Proof. For the Crown graph  $S^{o}{}_{n}$  with vertex set  $V = \{ u_{1}, u_{2}, ..., u_{n}, v_{1}, v_{2}, ..., v_{n} \}$ , Minimum dominating set  $S = \{ u_{1}, v_{1} \}$  Then,

|                | (     | $u_1$ | $u_2$ | $u_3$   |     | $u_n$ | $v_1$ | $v_2$ | $v_3$ |     | $v_n$ |     |
|----------------|-------|-------|-------|---------|-----|-------|-------|-------|-------|-----|-------|-----|
|                | $u_1$ | 1     | 1     | 1       |     | 1     | 1     | -1    | -1    |     | -1    |     |
|                | $u_2$ | 1     | 0     | 1       |     | 1     | -1    | 1     | -1    |     | -1    |     |
|                | $u_3$ | 1     | 1     | 0       |     | 1     | -1    | -1    | 1     |     | -1    |     |
|                |       | ÷     | -     | ÷       | ÷., | ÷     | ÷     | -     | ÷     | ÷., | :     |     |
| $S_D(S_n^0) =$ | $u_n$ | 1     | 1     | 1       |     | 0     | -1    | -1    | -1    |     | 1     |     |
|                | $v_1$ | 1     | -1    | $^{-1}$ |     | -1    | 1     | 1     | 1     |     | 1     |     |
|                | $v_2$ | -1    | 1     | -1      |     | -1    | 1     | 0     | 1     |     | 1     |     |
|                | $v_3$ | -1    | -1    | 1       |     | -1    | 1     | 1     | 0     |     | 1     |     |
|                | :     | :     | ÷     | :       | ÷., | ÷     | ÷     |       | ÷     | ÷., | :     |     |
|                | $v_n$ | -1    | -1    | -1      |     | 1     | 1     | 1     | 1     |     | 0 )   | (2n |

Characteristic equation is

$$(\lambda - 2)(\lambda - 1)^{n-1}(\lambda + 3)^{n-2}[\lambda^2 - (2n - 5)\lambda - 4(n - 1)] = 0$$

Minimum dominating Seidel eigenvalues are

$$\begin{split} \lambda &= 2 [\text{one time}], \quad \lambda = 1 [(n-1) \text{times}], \quad \lambda = -3 [(n-2) \text{times}], \\ \lambda &= \frac{(2n-5) \pm \sqrt{4n^2 - 4n + 9}}{2} \text{ [one time each].} \end{split}$$

Minimum dominating Seidel energy,  $SE_D(S^{\circ}_n)$ 

$$=2(1) + 1(n-1) + |-3|(n-2) + \left|\frac{(2n-5) + \sqrt{4n^2 - 4n + 9}}{2}\right| + \frac{|(2n-5) - \sqrt{4n^2 - 4n + 9}|}{2}$$
$$=(4n-5) + \sqrt{4n^2 - 4n + 9}.$$

### 3. PROPERTIES OF MINIMUM DOMINATING SEIDEL EIGENVALUES

**Theorem 3.** Let G be a simple graph with vertex set  $V = \{v_1, v_2, ..., v_n\}$ , edge set E and  $D = \{u_1, u_2, ..., u_k\}$  be a minimum dominating set. If  $\lambda_1, \lambda_2, ..., \lambda_n$  are the eigenvalues of minimum dominating Seidel matrix  $S_D(G)$  then,

(i) 
$$\sum_{i=1}^{n} \lambda_i = |D|.$$
  
(ii)  $\sum_{i=1}^{n} \lambda_i^2 = |D| + n^2 - n$ 

**Proof**. i) We know that the sum of the eigenvalues of  $S_D(G)$  is the trace of  $S_D(G)$ 

$$\therefore \sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii} = |D| = k.$$

(ii) Similarly the sum of squares of the eigenvalues of  $S_D(G)$  is the trace of  $[S_D(G)^2]$ 

$$\begin{aligned} \sum_{i=1}^{n} \lambda_i^2 &= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} a_{ji} \\ &= \sum_{i=1}^{n} (a_{ii})^2 + \sum_{i \neq j} a_{ij} a_{ji} \\ &= \sum_{i=1}^{n} (a_{ii})^2 + 2 \sum_{i < j} (a_{ij})^2 \\ &= |D| + 2 \Big[ m(-1)^2 + \Big( \frac{n^2 - n}{2} - m \Big) (1)^2 \Big] \\ &= |D| + n^2 - n. \end{aligned}$$

# 4. BOUNDS FOR MINIMUM DOMINATING SEIDEL ENERGY

Similar to McClelland's [13] bounds for energy of a graph, bounds for  $SE_D$  (G) are given in the following theorem.

**Theorem 4.1** Let G be a simple graph with n vertices and m edges . If D is the minimum dominating set and  $P = |detS_{\rm D}(G)|$  then  $\sqrt{(n^2 - n + k)} + n (n - 1) P^{2/n} \leq SE_{\rm D}(G) \leq \sqrt{n(n^2 - n + k)}$  where k is a domination number.

#### Proof.

IJS http:/ Since arithmetic mean is not smaller than geometric mean we have

Cauchy Schwarz inequality is 
$$\left(\sum_{i=1}^{n} a_{i}b_{i}\right)^{2} \leq \left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)$$
  
If  $a_{i} = 1, b_{i} = |\lambda_{i}|$  then  $\left(\sum_{i=1}^{n} |\lambda_{i}|\right)^{2} \leq \left(\sum_{i=1}^{n} 1\right)\left(\sum_{i=1}^{n} \lambda_{i}^{2}\right)$   
 $[SE_{D}(G)]^{2} \leq n(n^{2} - n + k)$  [Theorem 3.1]  
 $\Longrightarrow SE_{D}(G) \leq \sqrt{n(n^{2} - n + k)}$ 

$$\frac{1}{n(n-1)} \sum_{i \neq j} |\lambda_i| |\lambda_j| \geq \left[\prod_{i \neq j} |\lambda_i| |\lambda_j|\right] \frac{1}{n(n-1)}$$

$$= \left[\prod_{i=1}^n |\lambda_i|^{2(n-1)}\right] \frac{1}{n(n-1)}$$

$$= \left[\prod_{i=1}^n |\lambda_i|\right]^{\frac{2}{n}}$$

$$= \left|\prod_{i=1}^n \lambda_i\right|^{\frac{2}{n}}$$

$$= |\det S_D(G)|^{\frac{2}{n}} = P^{\frac{2}{n}}$$

$$\therefore \sum_{i=1}^n |\lambda_i| |\lambda_i| \geq n(n-1)P^{\frac{2}{n}}$$
(4.1)

Now consider,

*.*...

$$[SE_D(G)]^2 = \left(\sum_{i=1}^n |\lambda_i|\right)^2$$
  
=  $\sum_{i=1}^n |\lambda_i|^2 + \sum_{i \neq j} |\lambda_i| |\lambda_j|$   
:.  $[SE_D(G)]^2 \ge (k+n^2-n) + n(n-1)P^{\frac{2}{n}}$  [From (4.1)]  
i.e.,  $SE_D(G) \ge \sqrt{(k+n^2-n) + n(n-1)P^{\frac{2}{n}}}$ 

**Therorem 4.2.** If  $\lambda_1(G)$  is the largest minimum dominating Seidel eigenvalue of  $S_D(G)$ , then

 $\lambda_1(G) \ge \frac{n^2 - n + k}{n}$ where k is the domination number.

**Proof**. Let X be any nonzero vector. Then by [1], We have

$$\lambda_1(A) = \max_{X \neq 0} \left\{ \frac{X'AX}{X'X} \right\}$$

 $\therefore \lambda_1(A) \geq \frac{J'AJ}{J'I} = \frac{n^2 - n + k}{n}$  where J is a unit matrix [1, 1, 1, ..., 1]'.

Similar to Koolen and Moulton's [12] upper bound for energy of a graph, upper bound for  $SE_D$  (G) is given in the following theorem.

Theorem 4.3. If G is a graph with n vertices and m edges and  $(n^2 - n + k) \ge n$  then SE<sub>D</sub> (G)  $\le n^2 - n + k + \sqrt{(n-1)} [(n^2 - n + k)]$ k) –  $(n^2 - n + k)^2$  where k is a domination number. **Proof:** 

Cauchy-Schwartz inequality is 
$$\left[\sum_{i=2}^{n} a_i b_i\right]^2 \leq \left(\sum_{i=2}^{n} a_i^2\right) \left(\sum_{i=2}^{n} b_i^2\right)$$
  
Put  $a_i = 1, b_i = |\lambda_i|$  then  $\left(\sum_{i=2}^{n} |\lambda_i|\right)^2 = \sum_{i=2}^{n} \sum_{i=2}^{n} \lambda_i^2$   
 $\Rightarrow [SE_D(G) - \lambda_1]^2 \leq (n-1)(n^2 - n + k - \lambda_1^2)$   
 $\Rightarrow SE_D(G) \leq \lambda_1 + \sqrt{(n-1)(n^2 - n + k - \lambda_1^2)}$ 

Let  $f(x) = x + \sqrt{(n-1)(n^2 - n + k - x^2)}$ 

For decreasing function 
$$f'(x) \le 0 \Rightarrow 1 - \frac{x(n-1)}{\sqrt{(n-1)(n^2 - n + k - x^2)}} \le 0$$
  
 $\Rightarrow x \ge \sqrt{\frac{n^2 - n + k}{n}}$ 

Recently Milovanovic [14] et al. gave a sharper lower bounds for energy of a graph. In this paper similar bounds for minimum dominating Seidel energy of a graph are established.

Since 
$$(n^2 - n + k) \ge n$$
, we have  $\sqrt{\frac{n^2 - n + k}{n}} \le \frac{n^2 - n + k}{n} \le \lambda_1$  [From theorem 4.2]  
 $\therefore f(\lambda_1) \le f\left(\frac{n^2 - n + k}{n}\right)$   
i.e.,  $SE_D(G) \le f(\lambda_1) \le f\left(\frac{n^2 - n + k}{n}\right)$   
i.e.,  $SE_D(G) \le f\left(\frac{n^2 - n + k}{n}\right)$   
i.e.,  $SE_D(G) \le \frac{n^2 - n + k}{n} + \sqrt{(n - 1)\left[n^2 - n + k - \left(\frac{n^2 - n + k}{n}\right)^2\right]}$ .

Theorem 4.4. Let G be a graph with n vertices and m edges. Let  $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$  be a non – increasing order of minimum dominating seidel eigenvalues of S<sub>D</sub> (G) and D is minimum dominating set then SE<sub>D</sub> (G)  $\geq \sqrt{n(n^2 - n + |D|)} - \alpha(n)$  $(|\lambda_1| - |\lambda_n|)^2$  where  $\alpha$  (n) =n [n/2] (1 - 1/n[n/2]) and [x] denotes the integral part of a real number.

**Proof.** Let  $a_1, a_2, \dots, a_n$ , A and b,  $b_1, b_2, \dots, b_n$ , B be real numbers such that  $a \le a_i \le A$  and  $b \le b_i \le B$  for all i = 1, 2, ...n then the following inequality is valid.

 $|n\sum_{i=1}^{n}a_{i}b_{i} - \sum_{i=1}^{n}a_{i}\sum_{i=1}^{n}b_{i}| \le \alpha$  (n) (A - a) (B - b) where  $\alpha$ (n)= n (n/2) (1 - 1/n [n/2]) and equality holds if and only if  $a_{1} =$  $\begin{array}{l} a_2=\ldots=a_n \text{ and } b_1=b_2=\ldots=b_n.\\ \text{ If } a_i=|\lambda_i| \text{ , } b_i=|\lambda_i| \text{ , } a=b=|\lambda_n| \text{ and } A=B=|\lambda_1| \text{; then } \end{array}$ 

$$|n\sum_{i=1}^{n}|\lambda_{i}|^{2} - (\sum_{i=1}^{n}|\lambda_{i}|)^{2}| \leq \alpha(n)(|\lambda_{n}|^{2})^{2}$$

But  $\sum_{i=1}^{n} |\lambda_i|^2 = n^2 - n + |D|$  and  $SE_D(G) \le \sqrt{n(n^2 - n + |D|)}$  then the above inequality becomes

 $n(n^2 - n + |D|) - (SE_D(G))^2 \leq \alpha(n) (|\lambda_1| - |\lambda_n|)^2$ i,e., SE<sub>D</sub> (G)  $\geq \sqrt{n} (n^2 - n + |D|) - \alpha(n) (|\lambda_1| - |\lambda_n|)^2$ 

Theorem 4.5. Let G be a graph with n vertices and m edges. Let  $||\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n| > 0$  be a non-increasing order of eigenvalues of  $S_D$  (G) then

$$SE_D(G) \ge \frac{n^2 - n + |D| + n|\lambda_1||\lambda_n|}{(|\lambda_1| + |\lambda_n|)}$$

**Proof.**: Let  $a_i \neq 0$ ,  $b_i$ , r and R be real numbers satisfying  $ra_i \leq 1$  $b_i \leq Ra_i$ , then the following inequality holds. [Theorem 2, [14]] 1

$$\sum_{i=1}^{n} b_{i}^{2} + rR \sum_{i=1}^{n} a_{i} \leq (r+R) \sum_{i=1}^{n} a_{i} b_{i}$$

Put  $b_i = |\lambda_i|$ ,  $a_i = 1$ ,  $r = |\lambda_n|$  and  $R = |\lambda_1|$  then

$$\sum_{i=1}^{n} |\lambda_i|^2 + |\lambda_1| |\lambda_n| \sum_{i=1}^{n} 1 \le (|\lambda_1| + |\lambda_n|) \sum_{i=1}^{n} |\lambda_i|$$
  
*i.e.*,  $n^2 - n + |D| + |\lambda_1| |\lambda_n| n \le (|\lambda_1| + |\lambda_n|) SE_D(G)$   
 $\therefore SE_D(G) \ge \frac{n^2 - n + |D| + n|\lambda_1| |\lambda_n|}{(|\lambda_1| + |\lambda_n|)}$ 

Bapat and S.pati [2] proved that if the graph energy is a rational number then it is an even integer. Similar result for minimum dominating Seidel energy is given in the following theorem.

JSER © 2016 o://www.ijser.org **Theorem 4.6**. Let G be a graph with a minimum dominating set D. IF the minimum dominating Seidel energy  $SE_D(G)$  is a rational number, then  $SE_D(G) \equiv |D| \pmod{2}$ .

**Proof.** The proof is similar to the theorem 5.4 of [15]

**Conflict of interests:** The authors declares that there is no conflicts of interests regarding the publication of this paper.

### References

[1] R.B.Bapat, page No.32, Graphs and Matrices, Hindustan Book Agency, (2011).

[2] R.B.Bapat, S.Pati, Energy if a graph is never an odd integer. Bull. Kerala Math. Assoc, 1, 129 – 132 (2011)

[3] C.Adiga, A. Bayad, I. Gutman, S.A. Srinivas, The minimum covering energy of a graph, kragujevac J. Sci. 34 (2012) 39 – 56

[4] D. Cvetkovic, I. Gutman (eds.), Applications of Graph Spectra (Mathematical instictution, Belgrade,2009

[5] D. Cvetković , I . Gutman (eds.) Selected Topics on Applications of graph Spectra, (mathematical Institute Belgrade, 2011)

[6] A. Graovac, i.Gutman, N.Trinajstić, Topological Approach to the Chemistry of Conjugated Molecules (Springer, Berlin, 1977)

[7] I. Gutman, The energy of a graph. Ber. Math-Statist. Sekt. Forschunsz. Graz 103, 1-22 (1978)

[8] I. Gutman, X. Li, J. Zhand, in Graph Energy,ed. By M.Dehmer, F.Emmert – Streib. Analysis of complex Networks. From Biology to Linguistics (Wiley – VCH, Weinheim, 2009), pp. 145 174.

[9] I. Gutman, in The energy of a graph : Old and New Results, ed. by A. Betten, A. Kohnert. R.Laue, A. Wassermann. Algebraic Combinatorics and Applications (Springer, Berlin, 2001), pp.196-211.

[10] I.Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemisrty (Springer, Berlin, 1986)

[11] Huiqing Liu, Mei Lu and Fenf Tian, Some upper bounds for the energy of graphs Journal of Mathematical Chemistry, Vol. 41, No.1, (2007).

[12] J.H. Koolwn, V. Moulton, Maximal energy graphs. Adv. Appl. Math. 26,47-52 (2001)

[13] B.J.McClelland, Properties of the latent roots of a matrix : The estimation of  $\pi$ -electron energies. J. Chem. Phys.54, 640 – 643 (1971)

[14] I.Z. Milovanović, E.I. Milovanović, A. Zakićc A Short note on Graph Energy, MATH Commun. Math. Comput. Chem, 72 (2014) 179-182.

[15] M.R. Rajesh Kanna, B.N. Dharmendra, and G. Sridhara, Minimum dominating energy of a graph. International Journal of Pure and Applied Mathematics, 85, No. 4 (2013) 707-718. [http://dx.doi.org/10.12732/ijpam,v85i4.7]
[16] Willem H. Haemers, Seidel Switching and Graph Energy, MATH communMath. Comput. Chem, 68 (2012) 653-359..

